and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for generous support. We also thank Professor J. A. Berson and D. Birney for discussions of their work.

Registry No. 1, 22773-11-1; 3, 96866-57-8; 4, 87380-97-0; 5, 13426-49-8; 6, 35825-94-6; 7-acetoxy-3,5-(4-phenyl-3,5-dioxotetrahydro-1,2,4-triazol-1,2-diyl)tricyclo[2.2.1.0 ${ }^{2.6}$]heptane, 96866-58-9; 7-acetoxy-5,6-(4-phenyl-3,5-dioxotetrahydro-1,2,4-triazol-1,2-diyl) bicyclo[2.2.1]hept-2-ene, 96866-59-0.

One-Electron Reduction of Anthraquinone by Hydroxide Ion in Aprotic Media

Julian L. Roberts, Jr., Hiroshi Sugimoto, William C. Barrette, Jr., and Donald T. Sawyer*

Department of Chemistry, University of California Riverside, California 92521

Received March 11, 1985
In acetonitrile or dimethyl sulfoxide hydroxide ion reacts rapidly and reversibly with 9,10-anthraquinone and 2-ethylanthraquinone to form an adduct that subsequently reacts more slowly and irreversibly with a second quinone molecule to form near-stoichiometric amounts of the semiquinone anion radical. Several reports ${ }^{1-7}$ have suggested that hydroxide ion is an electron donor toward quinones and other electron acceptors, but the extent and nature of the electron-transfer process have not been determined. The process also yields oxidants (presumably hydrogen peroxide), ${ }^{1-7}$ and phenol has been isolated from systems that contain added benzene. ${ }^{3.4}$

Characterization of the electron transfer from OH^{-}to quinones is significant because (1) the reaction produces radical products from nonradical reactants, (2) the effectiveness of alkaline wood pulping with anthraquinone (AQ) additives is believed to result from the production of $A Q^{-} \cdot$ and $A Q^{2-}$, which function as soluble electron-transfer catalysts, ${ }^{8}$ and (3) there are several proposals ${ }^{9-12}$ that quinones (Q) can accept a single electron to form Q^{-}., which reacts with O_{2} to form O_{2}^{-}.
Figure 1A illustrates the spectra for $A Q$ and for the product solution from the combination of $1.5 \mathrm{OH}^{-}$per AQ at $-20^{\circ} \mathrm{C}$. The spectrum has a broad band at 268 nm but not the $323-\mathrm{nm}$ band for AQ nor those for $\mathrm{AQ}^{-} \cdot(543,506,408$, and 388 nm$)$. When it is warmed, the solution turns red with formation of AQ^{-}. (Figure 1A).

[^0]The addition of $1.3 \mathrm{M} \mathrm{Bu}_{4} \mathrm{~N}(\mathrm{OH})$ in MeOH (or 1 M aqueous NaOH) to $1-100 \mathrm{mM}$ anthraquinone (AQ) or 2-ethylanthraquinone ($2-\mathrm{EtAQ}$) in MeCN or $\mathrm{Me}_{2} \mathrm{SO}$ results in the almost stoichiometric ($80-98 \%$) formation of $\mathrm{AQ}^{-} \cdot$ or 2-EtAQ ${ }^{-} .{ }^{13}$ Figure 1 B indicates the initial rate for the formation of AQ^{-}from the combination of OH^{-}and AQ as a function of the mole ratio for OH^{-}relative to $\mathrm{AQ} .{ }^{14}$

When 2 equiv of $\mathrm{AQ}(1 \mathrm{mM})$ is combined with $0.5 \mathrm{mM} \mathrm{OH}^{-}$ the product solution contains equal amounts of $\mathrm{AQ}^{-} \cdot$ and AQ and no $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$, or OH^{-}. A voltammogram for the product solution exhibits an anodic peak at 2.1 V vs. SCE, which is characteristic of $\mathrm{H}_{2} \mathrm{O}_{2}$ and corresponds to the peak current for $0.2 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$. Addition of excess acid $\left(\mathrm{HClO}_{4}\right)$ to the product solution results in the oxidation of all of the AQ^{-}. to AQ (probably by $\mathrm{H}_{2} \mathrm{O}_{2}$).

The low-temperature electrochemical ${ }^{13}$ and UV-visible spectral data (Figure 1A) provide compelling evidence that AQ reacts with OH^{-}to form an addition complex $\left[\mathrm{AQ}(\mathrm{OH})^{-}\right]^{15}$

that $\mathrm{AQ}^{-} \cdot$ is formed in a second slower electron-transfer step with another AQ.

Control experiments establish that the addition of OH^{-}to $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeCN causes it to decompose by two different pathways. One forms water and dioxygen ${ }^{16}$

the other forms acetamide and dioxygen: ${ }^{17,18}$

Because only trace amounts of acetamide are detected, the dominant pathway for hydrogen peroxide decomposition in the present

[^1]

Figure 1. (A) UV-visible absorption spectra in acetonitrile under argon ($0.1-\mathrm{cm}$ path length cell) for $0.5 \mathrm{mM} \mathrm{AQ}(-)$, for the combination of 0.5 mM AQ and $1.5 \mathrm{mM}\left(\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{OH}$ (in MeOH) at $-20^{\circ} \mathrm{C}(--)$, and for the latter solution after it was warmed to $25^{\circ} \mathrm{C}(\cdots)$. (B) Initial rates of formation of AQ^{-}. from the reaction of $A Q$ with $\left(\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{OH}$ in MeCN under argon at $25 \pm 1^{\circ} \mathrm{C}$. The ordinate is the initial rate of appearance for $\mathrm{AQ}^{-} \cdot\left(\mathrm{mM} \mathrm{s}^{-1}\right)$ as monitored spectrophotometrically at 543 ($\epsilon 12$ $\mathrm{mM}^{-1} \mathrm{~cm}^{-1}$) in a $1-\mathrm{cm}$ cell. The solid curve was calculated from eq 6 with $K_{1}=4.3 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{2}=1.2 \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
system is via reaction 3. Any O_{2} formed reacts with AQ^{-}. to form $\mathrm{O}_{2}{ }^{-19}$

$$
\begin{equation*}
\mathrm{O}_{2}+\mathrm{AQ}^{-} \rightleftharpoons \mathrm{O}_{2}^{-}+\mathrm{AQ}, \quad K_{5}=0.14 \tag{5}
\end{equation*}
$$

Combination of reaction 1 with material balance relations for AQ and OH^{-}and the expression for the rate of formation of AQ^{-}. via Reaction 2 gives an expression for the initial rate

$$
\begin{align*}
\left(\frac{\mathrm{d}\left[\mathrm{AQ}^{-} \cdot\right]}{\mathrm{d} t}\right)_{t=0} & =k_{2}\left[\mathrm{AQ}(\mathrm{OH})^{-}\right][\mathrm{AQ}]= \\
& k_{2}\left(C_{\mathrm{AQ}}-C_{\mathrm{OH}^{-}}+\left[\mathrm{OH}^{-}\right]\right)\left(\frac{\left.C_{\mathrm{AQ} K_{1}\left[\mathrm{OH}^{-}\right]}^{1+K_{1}\left[\mathrm{OH}^{-}\right]}\right)}{}\right) \tag{6}
\end{align*}
$$

with C_{AQ} and COH^{-}the initial concentrations of AQ and OH^{-}. The parameters K_{1} and k_{2} have been determined by adjusting their values to give the best fit to the initial-rate data (Figure 1B). The respective values of K_{1} and k_{2} for AQ are $(4.3 \pm 0.5) \times 10^{4} \mathrm{M}^{-1}$ and $1.2 \pm 0.1 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and for $2-\mathrm{EtAQ}$ are $4 \times 10^{4} \mathrm{M}^{-1}$ and 4.2 $\mathrm{M}^{-1} \mathrm{~s}^{-1}$. The solid curve of Figure 1B results from the best-fit parameters for AQ in eq 6 ; the maximum at $\left[\mathrm{OH}^{-}\right] /[\mathrm{AQ}]=0.5$ is consistent with the proposed reaction sequence (eq 1 and 2).

The fate of the $A Q(O H)$ species that results from electron transfer to AQ from the adduct $\left[\mathrm{AQ}(\mathrm{OH})^{-}\right]$is not clear. However, the results indicate a rapid dimerization of $\mathrm{A} \dot{Q}(\mathrm{OH})$ followed by decomposition to AQ and $\mathrm{H}_{2} \mathrm{O}_{2}$. With excess base $\mathrm{H}_{2} \mathrm{O}_{2}$ is unstable and can disproportionate to O_{2} and $\mathrm{H}_{2} \mathrm{O},{ }^{16}$ react with MeCN , and oxidize AQ^{-}. Thus, the combination of OH^{-}and $A Q$ in aprotic solvents results in a significant yield of radicals $\left(\mathrm{AQ}^{-}\right)$and dioxygen species $\left(\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{2}\right.$, and $\left.\mathrm{O}_{2}^{-} \cdot\right)$. Such chemistry is likely to occur in biomembranes that contain the primary reactants and may represent one path for the apparent toxicity of natural quinones. ${ }^{12}$

Acknowledgment. This work was supported by the National Science Foundation under Grant CHE82-12299.

Registry No. AQ, 84-65-1; AQ^{-}, 3426-73-1; $\mathrm{AQ}(\mathrm{OH})^{-}$, 96914-49-7; $\mathrm{AQ}(\mathrm{OH}) \cdot$, 96914-50-0; EtAQ(OH) ${ }^{-}$, 96914-51-1; 2-EtAQ, 84-51-5; $\mathrm{OH}^{-}, 14280-30-9 ; \mathrm{H}_{2} \mathrm{O}_{2}, 7722-84-1 ; \mathrm{CH}_{3} \mathrm{CN}, 75-05-8 ; \mathrm{Bu}_{4} \mathrm{NOH}, 2052-$ 49-5; $\mathrm{NaOH}, 1310-73-2 ; \mathrm{O}_{2}, 7782-44-7$.
(19) The reversible redox potentials for the $\mathrm{AQ} / \mathrm{AQ}^{-} \cdot(-0.58 \mathrm{~V}$ vs. NHE) and $\mathrm{O}_{2} / \mathrm{O}_{2}-\cdot(0.63 \mathrm{~V})$ couples in MeCN provide a measure of $K_{5}(\log K=$ $\Delta E / 0.059$).

Preparation of an Unsubstituted Hydrazido(1-) Complex and an Authentic High Oxidation State Ditungsten Dinitrogen Complex

Robert C. Murray and Richard R. Schrock*

Department of Chemistry, 6-331
Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Received April 2, 1985

Although at least one end of dinitrogen is believed to bind to molybdenum (perhaps Mo(IV)) in nitrogenase in order to be reduced to ammonia, ${ }^{1}$ no dinitrogen complex of tungsten(IV) or molybdenum(IV) has ever been reported. There is good reason to expect that at least $\mu-\mathrm{N}_{2}$ complexes containing two M(IV) (d2) metals might be prepared since $\mathrm{Zr}(\mathrm{II}),{ }^{2} \mathrm{Nb}$ (III), ${ }^{3}$ and $\mathrm{Ta}(\mathrm{III}){ }^{3}$ complexes of this type are known and a recent $\mathrm{W}_{2}\left(\mu-\mathrm{N}_{2}\right)$ complex (formally W (II) if N_{2} and diphenylacetylene are assumed to be neutral ligands) prepared from hydrazine ${ }^{4}$ shows the relatively long $\mathrm{N}-\mathrm{N}$ bond (1.292 (16) \AA) characteristic of a highly reduced $\mathrm{N}_{2}\left(\mathrm{~N}_{2}{ }^{4}\right)$ ligand first observed in the Nb and Ta complexes. ${ }^{3}$ Here we show that a ditungsten(IV) μ - N_{2} complex can be prepared from hydrazine, that $\mathrm{NHNH}_{2}{ }^{1-}$ and $\mathrm{NNH}_{2}{ }^{2-}$ intermediates can be isolated, and that the $\mu-\mathrm{N}_{2}$ complex also can be prepared by reducing a $W(V)$ complex in the presence of molecular nitrogen.
$\mathrm{WCp}^{*} \mathrm{Me}_{4}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)^{5}$ can be oxidized by $\left[\mathrm{FeCp}_{2}\right]^{+}$$\mathrm{PF}_{6}{ }^{-}\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ in dichloromethane to give yellow [$\mathrm{WCp}{ }^{*} \mathrm{Me}_{4}$] $+\mathrm{PF}_{6}{ }^{-}(1)$ in 90% yield as a yellow powder. ${ }^{6}$ We believe $\mathbf{1}$ is the only isolable cationic d^{0} alkyl complex other than $\left[\mathrm{TaCp}_{2} \mathrm{Me}_{2}\right]^{+} \mathrm{BF}_{4}{ }^{-}{ }^{7}$ When 1 is added to ~ 2 equiv of hydrazine suspended in diethyl ether, it dissolves to give a colorless solution and a small amount of a beige and sometimes gummy precipitate. When dried thoroughly in vacuo the precipitate becomes a powder that has IR, ${ }^{31} \mathrm{P}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra that show the presence of the $\mathrm{PF}_{6}{ }^{-}$ion and that can be hydrolyzed to give ~ 1 equiv of hydrazine. ${ }^{8}$ Therefore, we believe the reaction proceeds as shown in eq 1. The proposed hydrazido(1-) complex (2) is

$$
\begin{align*}
{\left[\mathrm{WCp}^{*} \mathrm{Me}_{4}\right]^{+} \mathrm{PF}_{6}^{-}+2 \mathrm{~N}_{2} \mathrm{H}_{4}->\mathrm{WCp} \mathrm{Me}_{4}\left(\mathrm{NHNH}_{2}\right)+} \\
\mathbf{2} \tag{1}\\
{\left[\mathrm{N}_{2} \mathrm{H}_{5}\right]^{+} \mathrm{PF}_{6}^{-}(1) }
\end{align*}
$$

a white microcrystalline material that is soluble in ether or toluene. Its ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K shows a broad lump at 3.0 ppm that can be ascribed to the $\mathrm{N}_{2} \mathrm{H}_{3}$ protons in addition to peaks for the Cp^{*} and three other types of methyl groups at 1.23 (Cp^{*}), $0.44(2 \mathrm{Me}), 0.42(\mathrm{Me})$, and $0.34 \mathrm{ppm}(\mathrm{Me})$. The $\mathrm{N}_{2} \mathrm{H}_{3}$ peak at 2.7 ppm in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ splits into three broad singlets at 2.1 , 2.5 , and 3.5 ppm at 190 K . At the same time the two methyl groups that are equivalent at 298 K become inequivalent at 190 K. These data are consistent with the low-temperature, $18 \mathrm{e}^{-}$
(1) (a) Coughlin, M., Ed. "Molybdenum and Molybdenum-Containing Enzymes"; Pergamon Press: Elmsford, NY, 1980. (b) Hardy, R. W. F., Bottomley, F., Burns, R. C., Eds. "A Treatise on Dinitrogen Fixation"; Wi-ley-Interscience: New York, 1979. (c) Gibson, A. H.; Newton, W. F., Eds. "Current Perspectives in Nitrogen Fixation"; Elsevier: Amsterdam, 1981. (d) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Radiochem. 1983, 27, 197.
(2) (a) Manriguez, J. M.; McAlister, D. R.; Rosenberg, E.; Shiller, A. M.; Williamson, K. L.; Chan, S. I.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 3078. (b) Bercaw, J. E. In "Fundamental Research in Homogeneous Catalysis"; Tsutsui, M., Ugo, R., Eds.; Plenum Press: New York, 1977.
(3) Rocklage, S. M.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 3077.
(4) Churchill, M. R.; Li, Y. J.; Theopold, K. H.; Schrock, R. R. Inorg. Chem. 1984, 23, 4472.
(5) Murray, R. C.; Blum, L.; Liu, A. H.; Schrock, R. R. Organometallics 1985, 4, 953.
(6) Satisfactory elemental analyses have been obtained.
(7) Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. 1978, 100, 2389.
(8) (a) Hydrazine was quantitated in the usual manner. ${ }^{86}$ (b) Ball, G. W.; Chusp, J. D. Anal. Chem. 1952, 24, 2006.
(9) (a) McCleverty has good evidence for $\mathrm{Mo}\left[\mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right]$ (NO)(I) $\left(\mathrm{NHNH}_{2}\right),{ }^{9 b}$ but only one of three NHNH_{2} protons could be found in the ${ }^{1} \mathrm{H}$ NMR spectrum. (b) McCleverty, J. A.; Rae, A. E.; Wolochowicz, I.; Bailey, N. A.; Smith, J. M. A. J. Chem. Soc., Dalton Trans. 1983, 71.

[^0]: (1) Fomin, G. V.; Blyumenfel'd, L. A.; Sukhorukov, V. I. Dokl. Akad. Nauk SSSR 1964, 157, 1199.
 (2) Fomin, G. V.; Blyumenfel'd, L. A.; Davydov, R. M.; Ignat'eva, L. G. In "Sostoyanie i Rol' Vody v Biologicheskikh Ob'ektakh" (State and Role of Water in Biological Materials); Nauka: Moscow, 1967; p 120; Chem. Abstr. 1968, 69, $93032 z$.
 (3) Sholina, S. I.; Fomin, G. V.; Blyumenfel'd, L. A. Russ. J. Phys. Chem. (Engl. Transl.) 1969, 43, 447.
 (4) Blyumenfel'd, L. A.; Bryukhovetskaya; Fomin, G. V.; Shein, S. M. Russ. J. Phys. Chem. (Engl. Transl.) 1970, 44, 518.
 (5) Rashkov, I. B.; Panaiotov, I. M. Dokl. Bolg. Akad. Nauk 1971, 24, 889.
 (6) Arudi, R. L.; Allen, A. O.; Bielski, B. H. J. FEBS Lett. 1981, 135, 265.
 (7) Endo, T.; Miyazawa, T; Shiihashi, S.; Okawara, M. J. Am. Chem. Soc. 1984, 106, 3877.
 (8) Haggin, J. Chem. Eng. News 1984, 62 (42), 20.
 (9) Powis, G.; Svingen, B. A.; Appel, P. Adv. Exp. Med. Biol. 1982, 136 (Part A), 349.
 (10) Kappus, H.; Sies, H. Experentia 1981, 37, 1233-1241.
 (11) Sutton, H. C.; Sangster, D. F. J. Chem. Soc., Faraday Trans. 1 1982, 78, 695.
 (12) Ames, B. N. Science (Washington, D.C.) 1984, 221, 1256.

[^1]: (13) When OH^{-}is added to a solution of AQ in MeCN or $\mathrm{Me}_{2} \mathrm{SO}$ the limiting current for reduction of quinone at a PtRDE decreases immediately. The decrease is proportional to the amount of OH^{-}added with a stoichiometry of $1: 1 \mathrm{OH}^{-} / \mathrm{AQ}$. After $3-10 \mathrm{~min}$ the initial $\left(\mathrm{OH}^{-}\right)-\mathrm{AQ}$ adduct is converted to $\mathrm{AQ}^{-} \cdot$ and AQ . At $0^{\circ} \mathrm{C}$ in MeCN the addition of OH^{-}to AQ causes the reversible one-electron reduction couples for $A Q(-0.58$ and -1.12 V vs. NHE $)$ to be diminished and replaced by an irreversible reduction peak at -1.28 V . When the solution is warmed it yields AQ^{-}.
 (14) The rate of increase for the $543-\mathrm{nm}$ absorption band of AQ^{-}. was measured after the rapid combination ($\sim 3 \mathrm{~s}$) of $A Q(1 \mathrm{mM})$ with increasing mole ratios of ($\mathrm{Bu}_{4} \mathrm{~N}$) $\mathrm{OH}\left(1 \mathrm{M}\right.$ in MeOH) in MeCN at $25 \pm 1^{\circ} \mathrm{C}$.
 (15) Bishop, C. A.; Tong, L. K. J. Tetrahedron Lett. 1964, 3043.
 (16) Roberts, J. L., Jr.; Morrison, M. M.; Sawyer, D. T. J. Am. Chem. Soc. 1978, 100, 329.
 (17) Sawaki, Y.; Ogata, Y. Bull. Chem. Soc. Jpn. 1981, 54, 793.
 (18) Payne, G. B.; Deming, P. H.; Williams, P. H. J. Org. Chem. 1961, 26, 659.

